Well-dispersed high-loading pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation.
نویسندگان
چکیده
Shell-core nanostructured carbon materials with a nitrogen-doped graphitic layer as a shell and pristine carbon black particle as a core were synthesized by carbonizing the hybrid materials containing in situ polymerized aniline onto carbon black. In an N-doped carbon layer, the nitrogen atoms substitute carbon atoms at the edge and interior of the graphene structure to form pyridinic N and quaternary N structures, respectively. As a result, the carbon structure becomes more compact, showing curvatures and disorder in the graphene stacking. In comparison with nondoped carbon, the N-doped one was proved to be a suitable supporting material to synthesize high-loading Pt catalysts (up to 60 wt %) with a more uniform size distribution and stronger metal-support interactions due to its high electrochemically accessible surface area, richness of disorder and defects, and high electron density. Moreover, the more rapid charge-transfer rates over the N-doped carbon material are evidenced by the high crystallinity of the graphitic shell layer with nitrogen doping as well as the low charge-transfer resistance at the electrolyte/electrode interface. Beneficial roles of nitrogen doping can be found to enhance the CO tolerance of Pt catalysts. Accordingly, an improved performance in methanol oxidation was achieved on a high-loading Pt catalyst supported by N-doped carbon. The enhanced catalytic properties were extensively discussed based on mass activity (Pt utilization) and intrinsic activity (charge-transfer rate). Therefore, N-doped carbon layers present many advantages over nondoped ones and would emerge as an interesting supporting carbon material for fuel cell electrocatalysts.
منابع مشابه
Ethanol electrooxidation on the Co@Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media
In this study, the electrocatalytic activity of the Co@Pt core-shell nanoparticles toward the ethanol oxidation reaction has been investigated by cyclic voltammetry and chronoamperometry in acidic and alkaline media in details. The physicochemical data obtained in alkaline solution are compared to those in acidic solution. The obtained results demonstrate that while in the both media Co@Pt core...
متن کاملNi@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
متن کاملElectrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode
In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...
متن کاملCore–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol
Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...
متن کاملHierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell.
Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform disp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2008